在机器学习中,损失函数是衡量模型输出与真实值之间差异的指标。为了保证我们训练的模型能够有效地进行预测,我们需要定义一个合适的损失函数。本文将深入探讨如何在 PyTorch
中定义和使用损失函数
在机器学习中,损失函数是衡量模型输出与真实值之间差异的指标。为了保证我们训练的模型能够有效地进行预测,我们需要定义一个合适的损失函数。本文将深入探讨如何在 PyTorch
中定义和使用损失函数
在上一篇文章中,我们讨论了如何定义损失函数。这是模型训练中的重要一步,因为损失函数为我们提供了一个评估模型性能的标准。在进行模型训练时,除了损失函数,选择合适的优化器同样至关重要。优化器是调整模型
在前一篇文章中,我们讨论了模型训练之选择优化器的内容,了解到不同的优化器在训练过程中对模型参数更新的方式有所不同。在这一篇中,我们将深入探讨如何实现一个完整的训练循环,以便在选定优化器的基础上进行